

"A Brief Overview of Potato Cultivation in Pakistan, the Population Genetic Structure of *P. infestans*, Possible Control Strategies, and the Work Progress of AsiaBlight"

DR. WAQAS RAZA

Adjunct Scientist & Regional Representative

International Potato Center-China Center for Asia Pacific (CIP-CCCAP), Yanqing Beijing, China

Brief Overview of Talk

Introduction to potato cultivation in Pakistan

≻Key fungicides for PLB control

Research Work on PLB in Pakistan

Research Work at Nanjing Agricultural University

AsiaBlight Project: Overview of Research Work

≻Future plans

PAKISTAN AT A GLANCE

- Pakistan's agriculture sector contributes around 24 percent to the GDP and employs around 40 percent of the national labour force
- A Country of around 250 million people with 60% population below the age of 35.
- Largest irrigated land area in the World comes only after China, India and United States of America
- Total cultivated land is 22.54 million hectares (44% of total area), while arable land is 31.22 million hectares (39% of total area)
- The agriculture sector in Pakistan witnessed robust growth in 2023-24, with an overall increase of 6.25 percent.

PAKISTAN CAN BECOME ONE OF CHINA'S FAVORITE POTATO (AALU) EXPORTERS

- 4th most important crop after wheat, rice, and corn
- Self-sufficient in terms of internal consumption and seed production
- Annual per capita intake is over 15 kg-17 kg
- We have three crops of potatoes
- Autumn crop: October to February (70-75% market share)
- Spring crop: January to April (7-10% market share)
- Summer/hill crop: March to September (15-20% market share)

A total area of 0.341 million hectares in Pakistan was recorded to be utilized to farm potatoes in the year 2022-23.

Rank 🕈	Country +	2022 \$	2021 \$	2020 \$	2019 \$	2018 \$	2017 \$	2016 \$
1	China	95,570,055	94,300,000	92,800,000	89,500,000	90,259,155	88,481,500	84,928,500
2	💶 India	56,176,000	54,230,000	48,562,000	50,190,000	51,310,000	48,605,000	43,417,000
3	Ukraine	20,899,210	21,356,320	20,837,990	20,269,190	22,503,970	22,208,220	21,750,290
4	Russia	18,887,679	18,295,535	19,607,361	22,074,874	22,394,960	21,707,645	22,463,487
5	United States	17,791,840	18,589,530	19,051,790	19,251,320	20,421,560	20,453,430	20,426,359
6	Germany	10,683,400	11,312,100	11,715,100	10,602,200	8,920,800	11,720,000	10,722,100
7	Bangladesh	10,144,835	9,887,242	9,606,000	9,655,082	9,744,412	10,215,957	9,474,099
8	France	8,067,380	8,987,220	8,822,180	8,560,410	7,860,380	8,547,354	6,954,983
9	c Pakistan	7,936,884	5,872,960	4,552,656	4,869,312	4,591,776	3,852,897	3,977,595
10	Netherlands	6,915,900	6,675,590	7,020,060	6,961,230	6,025,370	7,391,881	6,534,338

Source: Ministry of National Food & Security 2022-23

POTATO CULTIVATION IN PAKISTAN. An Overview

Temperate, subtropical and tropical conditions

All soils except

saline and

alkaline soils

Ridge sowing R×R= 2 to 2.5 F P×P=6-8 Inch

Seed rate: 1200-

1500 Kg/acre

Vegetative growth best at 20-25°C

Tuber formation best at16-24°C

Ideal Soil with a pH range 5.2-6.4

Arizona, Sante, Desiree, Cardinal, SH-5, Sadaf, Bartina, Esmee

10-14 tones/acre

Potato Production Costs (Rs. / Acre)

Key fungicides for PLB in Pakistan

Fungicides	Active Ingredient	Company name	Dose/acre	Treatment cost/acre (US\$	Company Market share	Producers (local or imported)
Revus Start Pepite 430 WG	Mandipropamid 250g/kg, Cymoxanil 180g/kg	Syngenta	200 gm	11.13 US\$	20-25%	imported
Orandus Opti	400g/Lt Chlorothalonil + 6g/Lt Oxathiapiprolin	Syngenta	400 ml	10.59 US\$	20-25%	imported
Dragon 40wp	270g/Kg Chlorothalonil 130g/Kg Pyrimenthanil WP	Syngenta	400 gm	11.49 US\$	20-25%	imported
Antracol 70WP	Propineb 70% (Zinc Base)	Bayer	300-400 gm	11.54 US\$	20-22%	imported
Cabriotop 60WDG	Pyraclostrobin 5% + Metiram 55%	FMC	600gm	14.18 US\$	10-12%	imported
Acrobat Mz 90/600wp	Dimethomorph 90g Mancozeb 600g	FMC	250-300 gm	8.5 US\$	10-12%	imported
					Mordor Intelligence report	

FUNGICIDES MARKET GLOBAL FORECAST TO 2029 (USD BN)

Pakistan Crop Protection Chemicals Market Market Size in USD Million CAGR 3.12% USD 284.53 M USD 243.99 M

2029

2024

Source : Mordor Intelligence

Study Period	2017 - 2029
Market Size (2024)	USD 243.99 Million
Market Size (2029)	USD 284.53 Million
Largest Share by Function	Insecticide
CAGR (2024 - 2029)	3.12 %
Fastest Growing by Function	Herbicide
	Study Period Market Size (2024) Market Size (2029) Largest Share by Function CAGR (2024 - 2029) Fastest Growing by Function or Players

*Disclaimer: Major Players sorted in alphabetical order.

LARGEST SEGMENT BY APPLICATION MODE

60.18 %

Value Share, Foliar, 2023

Diseases such as Anthracnose, rust, blight and powdery mildew, which affect the major food crops, can be effectively controlled using the fungicide application foliar method.

Crop Protection Chemicals Market by function, USD, Pakistan, 2017 - 2029

Source: Mordor Intelligence

SWOT Analysis

Poportor	Exports 2023			
Reporter				
	∕√Value (US\$)∕	World Share (\$), 🗸		
Netherlands	1,218,089,854.52	20.16		
France	1,072,221,713.57	17.75		
Germany	659,035,572.40	10.91		
Canada	469,185,368.25	7.76		
Egypt	396,703,393.16	6.56		
USA	339,437,004.00	5.61		
Belgium	249,601,192.61	4.13		
China	229,678,633.00	3.80		
Spain	217,316,044.97	3.59		
United Kinadom	184,405,787.83	3.05		
Pakistan	140,191,089.01	2.32		
India	103,087,012.49	1.70		
Israel	88,560,000.00	1.46		
Denmark	74,863,277.65	1.23		
Italy	71,213,400.14	1.17		

LATE BLIGHT (PLB) IN PAKISTAN

- ◆PLB was first reported in 1984 in Swat, KPK by Khan et al., 1985
- The A2 mating type of P. infestans was first distinguished by Ahmad & Mirza (1995)
- Genotyping of samples collected in 2019-20 has identified the presence of genotype 13_A2 (Raza et al., 2020)
- 50-70% losses in Pakistan with potential yield losses upto 100% under epidemic conditions (Ahmad et al., 2015)

Representative work related to PLB (Pak.)

- Raza, W., Ghazanfar, M. U., Sullivan, L., Cooke, D. E., & Cooke, L. R. (2021). Mating type and aggressiveness of *Phytophthora infestans* (Mont.) de Bary in potato-growing areas of Punjab, Pakistan, 2017–2018 and identification of genotype 13_A2 in 2019–2020. Potato Research, 64, 115-129.
- Razzaq, H. A., Ijaz, S., Haq, I. U., & Khan, I. A. (2022). Functional inhibition of the StERF3 gene by dual targeting through CRISPR/Cas9 enhances resistance to the late blight disease in *Solanum tuberosum* L. Molecular Biology Reports, 49(12), 11675-11684.
- Majeed, A., Muhammad, Z., Ullah, Z., Ullah, R., & Ahmad, H. (2017). Late blight of potato (*Phytophthora infestans*) I: Fungicides application and associated challenges. Turkish Journal of Agriculture-Food Science and Technology, 5(3), 261-266.
- Majeed, A., Muhammad, Z., Ahmad, H., Islam, S., Ullah, Z., & Ullah, R. (2017). Late blight of potato (*Phytophthora infestans*) II: Employing integrated approaches in late blight disease management. PSM Biological Research, 2(3), 117-123.
- Rajputt, N. A., Khan, S. A., & Ahmad, A. (2017). Population structure of *Phytophthora infestans* on worldwide scale: a review. Pakistan Journal of Phytopathology, 29(2), 281-288.
- Nadeem Ahmed, N. A., Khan, M. A., Khan, N. A., & Ali, M. A. (2015). Prediction of potato late blight disease based upon environmental factors in Faisalabad, Pakistan.
- Chaudhry, A. M. Z., & Muhammad, Z. (2014). Variation in the aggressiveness of *Phytophthora infestans* pathotypes collected from different potato fields of Khyber Pakhtunkhwa (Pakistan). International Journal of Agriculture and Biology, 16(4).
- Rashid, A., Ahmad, I., Iram, S., Mirza, J. I., & Rauf, C. A. (2004). Efficiency of different neem (Azadirachta indica A. Juss) products against various life stages of *Phytophthora infestans* (Mont.) Debary. Pak. J. Bot, 36(4), 881-886.
- Khan, M. A., Rashid, A., Ullah, O. B. A. I. D., & Iqbal, M. J. (2003). Control of late blight of potato by foliar application of fungicides. Int. J. Agric. Biol, 5(4), 540-542.

Optimizing Potato Yield Analysis with IPM by Treatments

Enhancing Potato crop yield through innovative treatment approaches with chemical and biological agents

Treatment	Chemical/Biological Agent	Yield (tones/acre)
Control (No Treatment)	None	8.176
Cultural Practices	Crop Rotation (Sesame)	10.112
Biological Agents	Trichoderma harzianum + Bacillus spp (Biocontrol)	9.648
Chemical Pesticides	Fungazil (Fungicide)	10.752
Combined Approach (Bio+ Chem)	Fungazil + Trichoderma harzianum	11.376

Integrated pest management strategies for controlling PLB and enhancing crop yield

(Nauman et al., 2024)

Prevalence of Late Blight

Up to 40% (Okara District)

Results: Disease Incidence from different locations

Raza, UOS

Box plots showing disease Incidence of different districts showing increase in incidence 2016 &17 (A) Khushab (B) Sargodha (C) Sahiwal (D) Okara (E) Chiniot (F) Jhang

16

Quick Overview

Aggressiveness Tests

Fitness Tests

CAI = Infection frequency x Lesion area Latent infection period

- Infection frequency calculations were recorded as described by Carlisle et al. (2002)
- Isolates with CAI ≥ 1000 were considered as highly aggressive, CAI were ≥ 500 and < 1000 as moderately aggressive and CAI < 500 as weakly aggressive.

(Carlisle et al., 2002; Chacon et al., 2007; Montarry et al., 2007; Majeed et al., 2014)

CFI = lesion area x sporulation capacity Latent period

*Sporulation capacity was expressed as zoospores produced of leaf disc area Isolates with CFI ≥ 1000 were considered as highly fit and considered for further experiments.

(Knapova and Gisi, 2002)

44

Raza, UOS

CAI (Composite Aggressiveness Index) CFI (Composite Fitness Index)

Raza, UOS

The three parameters of aggressiveness (LA, LIP and IF) were very highly significant (P<0.001) correlated with each other and with the CAI; the CAI was therefore used for subsequent comparisons.

Results for Pathogen Fitness

Evaluation of Different Media for Selected Isolates

Mating type test

Mating type of Ph. infestans isolates potato growing areas of Punjab, Pakistan

Year and Area	Total number of	Number of isolates of mating type			
	isolates —	Al	A2	Self fertile	
2017					
Khushab	10	9	1	0	
Sargodha	12	10	2	о	
Sahiwal	13	8	4	1	
Okara	14	7	6	1	
Jhang	12	12	о	о	
Chiniot	11	9	2	о	
Total	72	55 (76) ^a	15 (21) ^a	2 (3) ^a	
2018					
Khushab	12	12	0	о	
Sargodha	13	10	2	1	
Sahiwal	13	7	5	1	
Okara	15	6	8	1	
Jhang	12	10	2	о	
Chiniot	12	9	2	1	
Total	77	54 (70)	19 (25)	4 (5)	
Total 2017-2018	149	109 (73) ^a	34 (23) ^a	6 (4) ^a	

a shows Percentage of isolates of each mating type

Raza, UOS

Research Conclusion

THE MERICAN PROVIDENCE OF STREET

Our work can contribute to the knowledge of this pathogen spread and promote future studies to understand its evolution, diversity and improve management decisions in the control of PLB.

Mating types (A1 and A2) are distributed throughout surveyed areas while A1 is more abundant in PAK.

The aggressive and most fit isolates belong to A2 in PAK. which highlight and emphasize the importance of population genetic study.

Based upon the above fact, application of fungicides should be according to prevalence, aggressiveness and mating types present in the field.

Raza, UOS

RESEARCH OBJECTIVES AT NAU

Investigate **un-explored fungicide combinations**, leveraging diverse modes of action, to discover potential control strategy

To determine the **minimum effective concentrations** of fungicide combinations against *P. infestans* to minimize environmental and human health hazards

NANJING AGRICULTURAL UNIVERSITY

南京農業× ldea of Propose Work 工作提案构想

Raza, NJAU

Main targeted fungicide

Cyazofamid (Protectant fungicides)

Cytochrome bc1 complex ATP production and energy metabolism

Pyraclostrobin (Protectant fungicides)

Cytochrome bc1 complex

Cymoxanil (Translaminar fungicides)

Unknown?

Raza, NJAU

• CCCAP's plans to implement a self-sustaining Asia-Blight network

Main Aim of Asia-Blight Network

• The first objective when Asia-Blight was created in 2015 was to establish a coarse scale map of *Phytophthora infestans* in the region.

Sample collection via FTA card for Pop. analysis

Sampling

Placed and Rub on FTA card

Air drying, ready for extraction of DNA

FTA card sampling.

https://www.youtube.com/watch?v=BQLe0G7vdHY_9 https://www.youtube.com/watch?v=BQLe0G7vdHY

Progress to date...

Sr#	Name of Country	No. FTA Cards	Collection Year	No. Sample	Status in Yes/No.
1	Pakistan	6, 28	2019 & 2023	24, 56	Processed
2	India	-	-	-	Within India
3	Uzbekistan	6	2022	24	Processed
4	Tajikistan	5	2022	10	Processed
5	Vietnam	2, 1	2020, 2022	08, 04	Processed
6	Philippine	35	2022	102	Processed
7	China	130	2019-2022	396	Processed
8	Korea	18	2023	36	Processed
9	Nepal	28	2023	28	Processed
10	Kyrgyzstan	5	2023	10	Processed
11	Georgia	4	2018	8	Processed

Thanks to David Cooke and his staff, we now have samples genotyped

Samples processed 700 plus DNA + PCR+ Results

Raza, CCCAP

EU-22-A2 Others Failed

Raza, CCCAP

基因型情况-2022年结果 (China)

Raza, UOS

Check for updates 111 eapr european association for polate research Received: 23 August 2019 / Accepted: 17 July 2020/Published online: 18 August 2020 Samples of blighted potato leaves were collected from fields in six potato-growing districts of the Punjab Province of Pakistan in 2017-2018. A total of 149 isolates of Phytophthora infestans were obtained from six potato cultivars (Asterix, Barsenna, Burana, Caroda, Mazika, Sante). Of these isolates, 73% were A1 mating type, 23% were A2 mating type and 4% were self-fertile. Both mating types of P. infestans EU_13_A occurred in all six districts sampled, but in every case, the A1 mating type predominated. The foliar aggressiveness of 104 of these isolates (weakly pathogenic isolates were excluded) was tested on detached leaflets of potato cv. Caroda, and a composite aggressiveness index (CAI) calculated from lesion area (measured after 10 days), latent period and infection frequency was used to compare isolates. There was no difference in CAI between isolates obtained from different districts or cultivars. The A2 mating type isolates had significantly greater CAIs than A1 isolates but this does not imply a genetic linkage nor a general association between mating type and aggressiveness. It may be that the A2 isolates belonged to an aggressive clonal lineage such as 13 A2 that has been reported in other countries in the region. While it was not possible to test the isolates collected in 2017-2018, genotyping of samples collected in 2019-2020 showed the widespread occurrence of the EU 13 A2 clonal lineage in the same districts of Pakistan and supported this hypothesis. This is the first report of EU 13 A2 from Pakistan. The implications for potato late blight management in the Keywords Aggressiveness · Late blight · Mating type · Phytophthora infestans population wagasraza61@vahoo.com Extended author information available on the last page of the article D Springer

0.2

MSN showed that the single type of SSR profile seen in PK also matched that seen in IN. This type has also been sampled in Europe. Due to this wide distribution, it might be possible to speculate on the route this clone may have taken into PK via EU & IN.

Potato Research https://doi.org/10.1007/s11540-020-09467-9

C The Author(s) 2020

Punjab are discussed.

Wagas Raza

🖂 Louise R. Cooke 1.cooke@aub.ac.uk

Abstract

Mating Type and Aggressiveness of Phytophthora infestans (Mont.) de Bary in Potato-Growing Areas of Punjab, Pakistan, 2017-2018 and Identification of Genotype 13 A2 in 2019-2020

Waqas Raza¹ · Muhammad Usman Ghazanfar¹ · Louise Sullivan² · David E. L. Cooke² · Louise R. Cooke³

0.05

Important points observed

- Genotype 22_A2 (PH.) these are the former A2 lineages in Europe (1990s) and interesting to see in Asia.
- Genotype Blue13_A2 not appear some samples in PK which is interesting
- Genotype 37_A2 (Tajkistan) fluazinam resistant found
- KR_1 is unique to South Korea, susceptible to metalaxyl; it may be due to the SIB-1 genotype, and SIB-1 is also resistant to metalaxyl.

➤ Genotype, EU43 increasing from 2% of the sampled European population in 2021 to 16% in 2022 expressing

resistance to mandipropamid upto 1000 ppm and cross resistance towards dimethomorph.

We must

have our attention on this situationin in Asia

(Norway, Sweden, Germany, Portugal, Denmark, Netherland, Belgium)

Potato Late Blight Toolbox

https://agro.au.dk/forskning/internationale-platforme/euroblight/research-

projects/ipmblight20/potato-late-blight-toolbox

Genotype Frequency Chart

Not sampled for AsiaBlight

<u>Armenia & Azerbaijan</u> (Western Asia) <u>Bhutan</u> (South Asia) <u>Myanmar & Thailand</u> (Southeast Asia) <u>Taiwan & Hong Kong (East Asia)</u>

Progress for 2024 **SAMPLE** collection

2024 FTA cards detail

Sr#	FTA cards Send	FTA cards Received	Country
1	100	82	Bangladesh
2	30	15	Pakistan
3	30	6+1	Vietnam
4	10	NR*	Georgia
5	30	NR*	Philippines
6		30	China (Guo Mei)

NR* Not Received

We need assistance from representatives from other countries to send us back the FTA cards (diseased) for the smooth functioning of ABN

Asia-Blight: Challenges

- Obtaining samples across a large, politically diverse region
- National biosecurity legislation restricted opportunities for direct participation in some Countries
- Countries differ greatly in their organizational structures, political attitudes to regional cooperation, plant health legislation and so in their ability to participate
- But we are **PROGRESSING**

Next steps for activity:

Started to write up for publication during 2024-25 with

the analysis part being finalized by @David Cooke.

- Need to seek approval from collectors/owners whether genotyping data from their samples can be included?
- AsiaBlight is in process to launch an Mobile APP for tracking FTA card shipping and delivery. This can reduce data collection errors (i.e., GPS and photo identification of sample collected) and provide a real time count of in-region FTA cards.

Login Fill the form to log in

Username or Email

Password

Your password

Register Now

Forgot Password?

- Developing sense of collaboration among regional representatives.
- Intentions to involve private sector partners from Pakistan into ABN.
- Begin genotyping for the remaining 2024 PLB samples at Yanqing after the conference concludes.
- What is the effect of significantly changing *Pi* populations on the efficacy of the fungicides to control potato late blight?

Qingshu 9 (National Potato Approval No.2011001) 90 days with 24000 to 30000 Kg per acre

青薯9号原种

青薯9号原原种

Basic Seed of Qingshu 9

Pre-basic Seed of Qingshu 9

In progress, co-ordination with Dingxi Jinlin Seed industry, China for pilot project in Pakistan. All other seed companies are welcome to contact for further discussion.

AsiaBlight: Acknowledgement

- David Cooke (James Hutton Institute, UK)
- Zhang Zhenxin (CCCAP, Yanqing, China)
- Country Representatives for ABN
 - Bangladesh: Rashid UI Islam
 - Georgia: Zura Khidesheli
 - India: Sanjoy Guha Roy
 - Indonesia: Ani Widiastuti
 - Japan: Seishi Akino
 - Kazakhstan: Vadim Khassanov
 - Korea: Jeomsoon Kim
 - Kyrgyzstan & Tajikistan: Saltanat Mambetova
 - Nepal: Ram Bahadur Khadka
 - Pakistan: Waqas Raza
 - Philippines: Teresita Masangcay
 - Uzbekistan: Mukhtabar Tashmatova
 - Vietnam: Pham Thi Thu Huong & Sunil Chaudhari

Acknowledgment

Dr. Louise Cooke (Late)

Prof. Dr. Muhammad Usman Ghazanfar University of Sargodha

Prof. Dr. Sumeong Dong Nanjing Agricultural University

Dr. Philip Kear The International Potato Center-China Center for Asia Pacific (CCCAP)

Higher Education Commission of Pakistan Islamabad, Pakistan

You can join the network and get information about AsiaBlight events, trainings, news, etc. by simply sending an e-mail to

CIP-AsiaBlightContact@cgiar.org

Meet the AsiaBlight Team

https://www.asiablight.org/the-team/

William Earl Fry Asia-Blight Advisor

Dr. Waqas Raza Email: waqasraza61@yahoo.com WeChat Id= Phytodoctor61 UAN# +8617871990858

Waqas Raza Pakistan

